

Statistical Learning Methods for Process Data

Jingchen Liu

Department of Statistics Columbia University

July 19, 2021

Paper-pencil tests

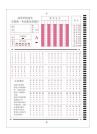
Trigonometry
1. Solve for 0. 0≤0 €27
a) 2 cos² 8-1=0
Coso = = > Coso = 1/5.
on [0,27]: 8= Ta, 37, 47, 47.
b). 3 tan20-1=0.
tan' 0 = = = tan 0 = = 1/3
อก [0,211): O= T, ET, ZT, ZT.

Standard tests

Figure: Exams when I was a student

Process Data

Paper-pencil test, standard test, computer-based interactive test



Process response

Process response

Process data

New problems:

- problem-solving strategy analysis
- cognitive structures
- ...

Existing problems

- assessment
- differential item functioning
- computerized adaptive testing
- adaptive learning, etc.

- New problems:
 - problem-solving strategy analysis
 - cognitive structures
 - ..
- Existing problems:
 - assessment
 - differential item functioning
 - computerized adaptive testing
 - adaptive learning, etc

- ► New problems:
 - problem-solving strategy analysis
 - cognitive structures
 - ...
- Existing problems:
 - assessment
 - differential item functioning
 - computerized adaptive testing
 - adaptive learning, etc.,

- ► New problems:
 - problem-solving strategy analysis
 - cognitive structures
 - **.**..
- **Existing problems:**
 - assessment
 - differential item functioning
 - computerized adaptive testing
 - adaptive learning, etc.,

- ► New problems:
 - problem-solving strategy analysis
 - cognitive structures
 - **.**...
- Existing problems:
 - assessment
 - differential item functioning
 - computerized adaptive testing
 - adaptive learning, etc.
 - .

- ► New problems:
 - problem-solving strategy analysis
 - cognitive structures
 - **.**..
- Existing problems:
 - assessment
 - differential item functioning
 - computerized adaptive testing
 - adaptive learning, etc.

- ► New problems:
 - problem-solving strategy analysis
 - cognitive structures
 - **.**..
- Existing problems:
 - assessment
 - differential item functioning
 - computerized adaptive testing
 - adaptive learning, etc.
 - .

- New problems:
 - problem-solving strategy analysis
 - cognitive structures
 - **...**
- Existing problems:
 - assessment
 - differential item functioning
 - computerized adaptive testing
 - adaptive learning, etc.
 - .

- ► New problems:
 - problem-solving strategy analysis
 - cognitive structures
 - **.**..
- Existing problems:
 - assessment
 - differential item functioning
 - computerized adaptive testing
 - adaptive learning, etc.

- ► New problems:
 - problem-solving strategy analysis
 - cognitive structures
 - **.**...
- Existing problems:
 - assessment
 - differential item functioning
 - computerized adaptive testing
 - adaptive learning, etc.
 - **.**

- Research objective
- Empirical findings
- ► Technical details: references http://www.scientifichpc.com/processdata/pub.html
- ▶ Implementation: sessions 3 and 4

- ► Research objective
- Empirical findings
- ► Technical details: references http://www.scientifichpc.com/processdata/pub.html
- ► Implementation: sessions 3 and 4

- ► Research objective
- Empirical findings
- ► Technical details: references http://www.scientifichpc.com/processdata/pub.html
- ► Implementation: sessions 3 and 4

- ► Research objective
- ► Empirical findings
- ► Technical details: references http://www.scientifichpc.com/processdata/pub.html
- ▶ Implementation: sessions 3 and 4

Content of the overview

- ▶ Feature extraction: $(\theta_1, ..., \theta_K) \in \mathbb{R}^K$
- ► Partial scoring
- Removing differential item functioning

Content of the overview

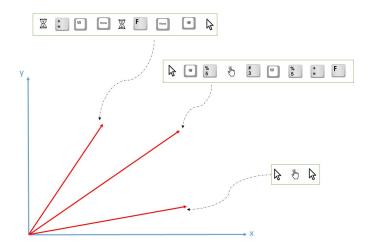
- ▶ Feature extraction: $(\theta_1, ..., \theta_K) \in \mathbb{R}^K$
- Partial scoring
- ► Removing differential item functioning

Content of the overview

- ▶ Feature extraction: $(\theta_1, ..., \theta_K) \in \mathbb{R}^K$
- Partial scoring
- Removing differential item functioning

Feature Extraction

Embedding



Embedding

► Process response:

```
action:Start, Click_cs, Click_ObtNo, ..., Next, Next_OK time: 0.0 , 2.9 , 12.1 , ..., 60.4, 62.2
```

▶ Summarize the process to $(\theta_1, ..., \theta_k) \in \mathbb{R}^k$.

A large variety of items

- Email handling/classification, spread sheet handling, scheduling, web browsing/comprehension, etc.
- Learning/interactive with a system, designing experiments, etc.

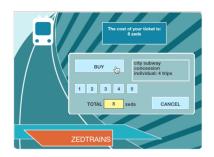
Process Data

TICKETS

A train station has an automated ticketing machine. You use the touch screen on the right to buy a ticket. You must make three choices.

- Choose the train network you want (subway or country).
- Choose the type of fare (full or concession).
- o Choose a daily ticket or a ticket for a specified number of trips. Daily tickets give you unlimited travel on the day of purchase. If you buy a ticket with a specified number of trips, you can use the trips on different days.

The BUY button appears when you have made these three choices. There is a CANCEL button that can be used at any time BEFORE you press the RHV button



Question TICKETS

You plan to take four trips around the city on the subway today. You are a student, so you can use concession fares. Use the ticketing machine to find the cheapest ticket and press BUY.

Once you have pressed BUY, you cannot return to the question.

Very noisy

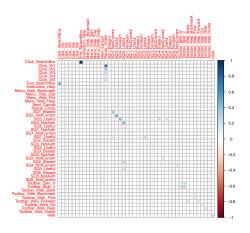


Figure: Lag 1 autocorrelation: $cor(a_t, a_{t+1})$

Very noisy

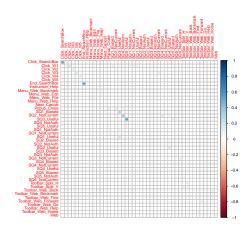


Figure: Lag 2 autocorrelation: $cor(a_t, a_{t+2})$

Objective

- ▶ Denoising: aggregate the process to strengthen the signal.
- ▶ Formatting: $\theta \in \mathbb{R}^K$, for $K \ge 100$.
- ▶ Dimension reduction.

Latent structure extraction

- ▶ Process length varies among individuals in the range of [3,1000]
- ▶ The number of possible actions m varies among items in the range of [20, 300].
- $(a_1,...,a_{n_i}) \Rightarrow (\theta_1,...,\theta_k)$

Evaluation criteria

- ▶ Process features: $(a_1, ..., a_{n_i}) \Rightarrow \theta = (\theta_1, ..., \theta_k)$
- ▶ Benchmark: $(a_1, ..., a_{n_i}) \Rightarrow r \in \{\sqrt{x}\}$: task accomplishment
- ▶ Does θ contain more information than r? How much information do we loose?

Assessing latent variable

- y: a different variable, such as literacy score.
 - $ightharpoonup \hat{y}_{\theta}$: prediction based on θ

versus

 \triangleright \hat{y}_r : prediction based on r

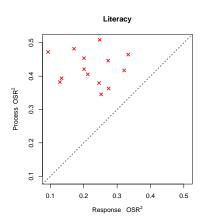
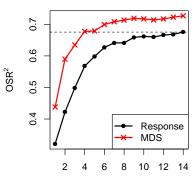


Figure: $cor^2(y, \hat{y}_r)$ versus $cor^2(y, \hat{y}_\theta)$



Number of items

Figure: $cor^2(y, \hat{y}_{r_1,...,r_k})$ versus $cor^2(y, \hat{y}_{\theta_1,...,\theta_k})$

Latent structure extraction

Multidimensional scaling

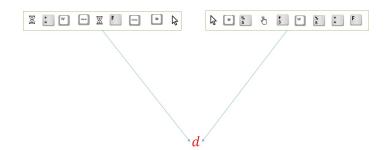
Tang, X., Wang, Z., He, Q., Liu, J., and Ying, Z. (2019) Latent Feature Extraction for Process Data via Multidimensional Scaling. *Psychometrika*.

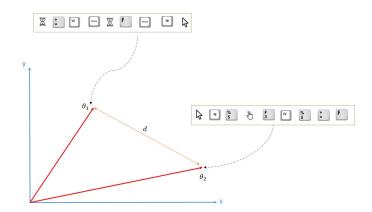
Autoencoder

Tang, X., Wang, Z., Liu, J., and Ying, Z. (2019) An Exploratory Analysis of the Latent Structure of Process Data via Action Sequence Autoencoder. *British Journal of Mathematical and Statistical Psychology*.

R package

Tang, X., Zhang, S., Wang, Z., Liu, J., and Ying, Z. (2021) ProcData: An R Package for Process Data Analysis. *Psychometrika*. To appear.





Two response processes: $\mathbf{a}_i = (a_{i1},...,a_{in_i}), \ \mathbf{a}_j = (a_{j1},...,a_{jn_j})$

$$(a_i, a_j) \rightarrow d_{ij} = d(a_i, a_j)$$

► The distance Gómez-Alonso and Valls (2008)

$$d(a_i,a_j)=\frac{f(a_i,a_j)+g(a_i,a_j)}{n_i+n_j},$$

Common actions:

$$f(a_i, a_j) = \frac{\sum_{a \in C_{ij}} \sum_{k=1}^{N_{ij}} |s_i^a(k) - s_j^a(k)|}{\max\{n_i, n_i\}}$$

Uncommon actions

$$g(a_i, a_j) = \sum_{a \in U} n_i^a + \sum_{a \in U} n_j^a$$

Two response processes: $a_i = (a_{i1}, ..., a_{in_i})$, $a_j = (a_{j1}, ..., a_{jn_j})$ $(a_i, a_i) \rightarrow d_{ii} = d(a_i, a_i)$

► The distance Gómez-Alonso and Valls (2008)

$$d(a_i,a_j) = \frac{f(a_i,a_j) + g(a_i,a_j)}{n_i + n_j},$$

Common actions:

$$f(a_i, a_j) = \frac{\sum_{a \in C_{ij}} \sum_{k=1}^{K_{ij}} |s_i^a(k) - s_j^a(k)|}{\max\{n_i, n_j\}}$$

Uncommon actions:

$$g(a_i, a_j) = \sum_{a \in II:i} n_i^a + \sum_{a \in II:i} n_j^a$$

Two response processes: $a_i = (a_{i1}, ..., a_{in_i})$, $a_j = (a_{j1}, ..., a_{jn_j})$ $(a_i, a_i) \rightarrow d_{ii} = d(a_i, a_i)$

► The distance Gómez-Alonso and Valls (2008)

$$d(a_i,a_j) = \frac{f(a_i,a_j) + g(a_i,a_j)}{n_i + n_j},$$

Common actions:

$$f(a_i, a_j) = \frac{\sum_{a \in C_{ij}} \sum_{k=1}^{K_{ij}^a} |s_i^a(k) - s_j^a(k)|}{\max\{n_i, n_j\}},$$

Uncommon actions:

$$g(\mathbf{a}_i, \mathbf{a}_j) = \sum_{a \in U_{ii}} n_i^a + \sum_{a \in U_{ii}} n_j^a,$$

Two response processes: $a_i = (a_{i1}, ..., a_{in_i})$, $a_j = (a_{j1}, ..., a_{jn_j})$ $(a_i, a_i) \rightarrow d_{ii} = d(a_i, a_i)$

$$d(a_i,a_j) = \frac{f(a_i,a_j) + g(a_i,a_j)}{n_i + n_j},$$

Common actions:

$$f(a_i, a_j) = \frac{\sum_{a \in C_{ij}} \sum_{k=1}^{K_{ij}^a} |s_i^a(k) - s_j^a(k)|}{\max\{n_i, n_i\}},$$

Uncommon actions:

$$g(a_i, a_j) = \sum_{a \in U_i} n_i^a + \sum_{a \in U_i} n_j^a,$$

► Two response processes: $a_i = (a_{i1}, ..., a_{in_1}), a_j = (a_{j1}, ..., a_{jn_2})$

$$(a_i, a_j) \rightarrow d_{ij}, \quad 1 \leq i, j \leq n$$

- ▶ Distance matrices $D = (d_{ij})_{n \times n}$
- Latent variable $\theta_i \in \mathbb{R}^k$.

$$d_{ij} = \varphi(\theta_i, \theta_j) + \varepsilon_i$$

where $\varphi(\theta_i, \theta_j) = |\theta_i - \theta_j|$.

Optimization

$$\min_{\theta_1,\ldots,\theta_n} \sum_{i=1}^{n} |d_{ij} - \varphi(\theta_i,\theta_j)|^2$$

► Two response processes: $a_i = (a_{i1}, ..., a_{in_1}), a_j = (a_{j1}, ..., a_{jn_2})$

$$(a_i, a_j) \rightarrow d_{ij}, \quad 1 \leq i, j \leq n$$

- ▶ Distance matrices $D = (d_{ij})_{n \times n}$
- Latent variable $\theta_i \in \mathbb{R}^k$.

$$d_{ij} = \varphi(\theta_i, \theta_j) + \varepsilon_i$$

where $\varphi(\theta_i, \theta_j) = |\theta_i - \theta_j|$.

Optimization

$$\min_{\theta_1,\ldots,\theta_n} \sum_{i=1}^{n} |d_{ij} - \varphi(\theta_i,\theta_j)|^2$$

► Two response processes: $a_i = (a_{i1}, ..., a_{in_1}), a_j = (a_{j1}, ..., a_{jn_2})$

$$(a_i, a_j) \rightarrow d_{ij}, \quad 1 \leq i, j \leq n$$

- ▶ Distance matrices $D = (d_{ij})_{n \times n}$
- Latent variable $\theta_i \in \mathbb{R}^k$.

$$d_{ij} = \varphi(\theta_i, \theta_j) + \varepsilon_{ij}$$

where
$$\varphi(\theta_i, \theta_j) = |\theta_i - \theta_j|$$
.

Optimization

$$\min_{\theta_1,\ldots,\theta_n} \sum_{i,j} |d_{ij} - \varphi(\theta_i,\theta_j)|^2$$

ightharpoonup Two response processes: $a_i=(a_{i1},...,a_{in_1})$, $a_j=(a_{j1},...,a_{jn_2})$

$$(a_i, a_j) \rightarrow d_{ij}, \quad 1 \leq i, j \leq n$$

- ▶ Distance matrices $D = (d_{ij})_{n \times n}$
- Latent variable $\theta_i \in \mathbb{R}^k$.

$$d_{ij} = \varphi(\theta_i, \theta_j) + \varepsilon_{ij}$$

where $\varphi(\theta_i, \theta_i) = |\theta_i - \theta_i|$.

Optimization

$$\min_{\theta_1,\ldots,\theta_n} \sum_{i \in \mathcal{E}} |d_{ij} - \varphi(\theta_i,\theta_j)|^2.$$

Two response processes: $\mathbf{a}_i = (a_{i1},...,a_{in_1}), \mathbf{a}_j = (a_{j1},...,a_{jn_2})$

$$(a_i, a_j) \rightarrow d_{ij}, \quad 1 \leq i, j \leq n$$

- $\qquad \qquad \textbf{Distance matrices } D = (d_{ij})_{n \times n}$
- Latent variable $\theta_i \in \mathbb{R}^k$.

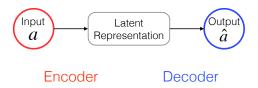
$$d_{ij} = \varphi(\theta_i, \theta_j) + \varepsilon_{ij}$$

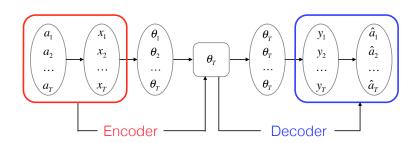
where $\varphi(\theta_i, \theta_j) = |\theta_i - \theta_j|$.

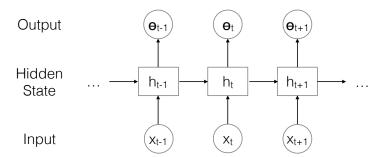
Optimization

$$\min_{\theta_1,\ldots,\theta_n} \sum_{i \in \mathcal{E}} |d_{ij} - \varphi(\theta_i,\theta_j)|^2.$$

Autoencoder







Autoencoder

- Autoencoder via tenorflow
- Tang, X., Wang, Z., Liu, J., and Ying, Z. (2019) An Exploratory Analysis of the Latent Structure of Process Data via Action Sequence Autoencoder. British Journal of Mathematical and Statistical Psychology.

Criterion

- ightharpoonup $a\Rightarrow \theta\in\mathbb{R}^K$: multidimensional scaling or autoencoder
- ▶ $a \Rightarrow r \in {\sqrt{x}}$: task accomplishment

Assessing latent variable

- \triangleright How much information did we lose to r?
- $ightharpoonup \hat{r}_{\theta}$: prediction of task accomplishment based on θ .
- ▶ To what extend θ captures the information in r.

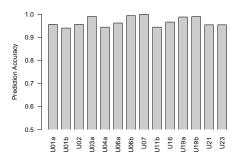


Figure: $P(r = \hat{r}_{\theta})$ based on MDS

Assessing latent variable through prediction

- ▶ How much additional information do we gain?
- y: a different variable, such as numeracy score.
 - \triangleright \hat{y}_{θ} : prediction based on θ

Versus

 \triangleright \hat{y}_r : prediction based on r

$cor(y, \hat{y})$

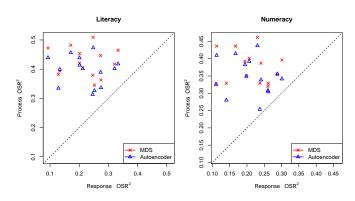


Figure: \hat{y}_{θ} versus \hat{y}_{r}

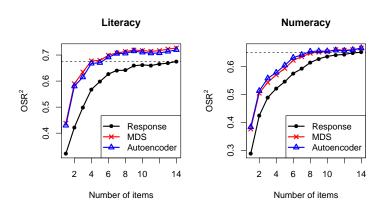


Figure: $\hat{y}(\theta_1, ..., \theta_k)$ versus $\hat{y}(r_1, ..., r_k)$

Demographic variables

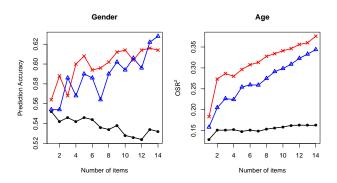


Figure: Prediction of age and gender

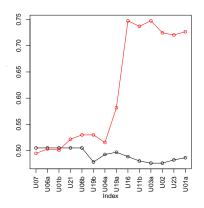


Figure: Prediction of country

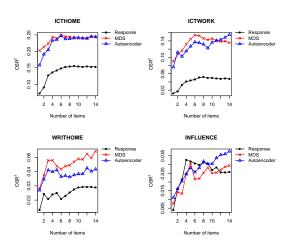


Figure: ICTHOME,ICTWORK,WRITHOME,INFLUENCE

Closer look at the latent variables – principle components

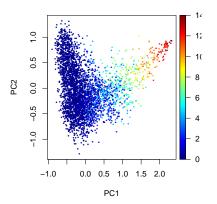


Figure: Principle components of θ . PC1 correlation with number of skipped items: 0.88

Latent variable in subpopulations

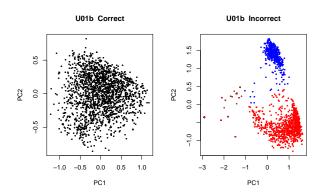
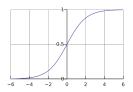


Figure: Correct vs incorrect

Applications

- Partial score: improving assessment accuracy
- Removing differential item functioning (DIF)

Partial scores



IRT model

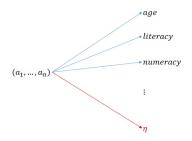
$$P(r_j=1|\eta)=rac{\mathrm{e}^{a_j(\eta-b_j)}}{1+\mathrm{e}^{a_j(\eta-b_j)}}$$

Assessment (grading/scoring) via maximum likelihood estimate

$$\hat{\eta}(r_1,...,r_J) = \arg\max_{\eta} \prod_{i} P(r_i|\eta)$$

▶ Process-data-based scores: $\hat{\eta}(a_j)$

Partial scores



- Difficulty: validity
- Partial scores based on the entire response process
- Scores guided by y.
- ► Generalization: assisting any measurable characteristics

- ► Train a scoring rule f(a) towards η .
- $ightharpoonup r = g(\eta) + \varepsilon \sim a$, ε is a-predictable.
- $ightharpoonup g(\eta) + \epsilon \sim a$
- Proxies

$$\hat{\eta}(r_{-i}) = \eta + i - \eta$$

a: process features (

$$\hat{\eta}(r_{-i}) \sim \theta$$

- Train a scoring rule f(a) towards η.
- $ightharpoonup r = g(\eta) + \varepsilon \sim a$, ε is a-predictable.

$$ightharpoonup g(\eta) + \epsilon \sim a$$

Proxies

$$\hat{\eta}(r_{-i}) = \eta + \epsilon$$

a: process features 6

$$\hat{\eta}(r_{-j}) \sim \epsilon$$

- Train a scoring rule f(a) towards η.
- $ightharpoonup r = g(\eta) + \varepsilon \sim a$, ε is a-predictable.
- $ightharpoonup g(\eta) + \epsilon \sim a$
- Proxies

$$\hat{\eta}(r_{-i}) = \eta + \epsilon$$

a: process features b

$$\hat{\eta}(r_{-i}) \sim \theta$$

- Train a scoring rule f(a) towards η.
- $ightharpoonup r = g(\eta) + \varepsilon \sim a$, ε is a-predictable.
- $ightharpoonup g(\eta) + \epsilon \sim a$
- Proxies

$$\hat{\eta}(r_{-j}) = \eta + \epsilon$$

 \triangleright a: process features θ

$$\hat{\eta}(r_{-i}) \sim \theta$$

Partial scores guided by response

- ► Train a scoring rule f(a) towards η .
- $ightharpoonup r = g(\eta) + \varepsilon \sim a$, ε is a-predictable.
- $ightharpoonup g(\eta) + \epsilon \sim a$
- Proxies

$$\hat{\eta}(r_{-j}) = \eta + \epsilon$$

 \triangleright a: process features θ

$$\hat{\eta}(r_{-i}) \sim \theta$$

Partial scores guided by response

- ► Train a scoring rule f(a) towards η .
- $ightharpoonup r = g(\eta) + \varepsilon \sim a$, ε is a-predictable.
- $ightharpoonup g(\eta) + \epsilon \sim a$
- Proxies

$$\hat{\eta}(r_{-j}) = \eta + \epsilon$$

 \triangleright a: process features θ

$$\hat{\eta}(r_{-j}) \sim \theta$$

Partial scores guided by response

- 1. Extract process feature θ_j for each item
- 2. Compute IRT score $\eta(r_{-j})$
- 3. Regression: $\hat{\boldsymbol{\eta}} = f(\theta_j)$
- 4. Score: $f(\theta_j)$

- ▶ 14 PSTRE items in total
- Randomization
 - Session 1 (7 items): $\hat{\eta}_1$ IRT estimate, $\tilde{\eta}_1$ process data estimate
 - Session 2 (7 items): η̂₂ IRT estimate
- Compare $cor(\hat{\eta}_1, \hat{\eta}_2)$ against $cor(\tilde{\eta}_1, \hat{\eta}_2)$

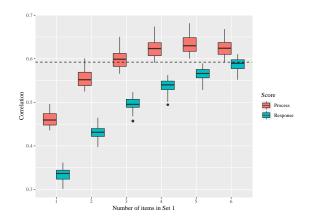
- ▶ 14 PSTRE items in total
- Randomization
 - Session 1 (7 items): $\hat{\eta}_1$ IRT estimate, $\tilde{\eta}_1$ process data estimate
 - Session 2 (7 items): $\hat{\eta}_2$ IRT estimate
- Compare $cor(\hat{\eta}_1, \hat{\eta}_2)$ against $cor(\tilde{\eta}_1, \hat{\eta}_2)$

- ▶ 14 PSTRE items in total
- Randomization
 - Session 1 (7 items): $\hat{\eta}_1$ IRT estimate, $\tilde{\eta}_1$ process data estimate
 - Session 2 (7 items): $\hat{\eta}_2$ IRT estimate
- Compare $cor(\hat{\eta}_1, \hat{\eta}_2)$ against $cor(\tilde{\eta}_1, \hat{\eta}_2)$

- ▶ 14 PSTRE items in total
- Randomization
 - Session 1 (7 items): $\hat{\eta}_1$ IRT estimate, $\tilde{\eta}_1$ process data estimate
 - Session 2 (7 items): $\hat{\eta}_2$ IRT estimate
- Compare $cor(\hat{\eta}_1, \hat{\eta}_2)$ against $cor(\tilde{\eta}_1, \hat{\eta}_2)$

- ▶ 14 PSTRE items in total
- Randomization
 - Session 1 (7 items): $\hat{\eta}_1$ IRT estimate, $\tilde{\eta}_1$ process data estimate
 - Session 2 (7 items): $\hat{\eta}_2$ IRT estimate
- ightharpoonup Compare $cor(\hat{\eta}_1, \hat{\eta}_2)$ against $cor(\tilde{\eta}_1, \hat{\eta}_2)$

Out-of-sample Reliability



Differential item functioning (DIF)

- About differential item functioning
- Literature: identifying DIF
- Process data: removing DIF

▶ Response *Y* with item response function

$$r \sim \eta, x_1, ..., x_m$$

$$f(r|\frac{\eta}{\eta}, x_1, ..., x_m)$$

Assessment model

$$r \sim \eta$$

Observed item response function

$$f(r|\eta) = \int f(r|\eta, x_1, ..., x_m) \pi(x_1, ..., x_m|\eta) dx_1...dx_m$$

► Two groups: 1 and 2.

$$f_{g}(r|\eta) = \int f(r|\eta, x_{1}, ..., x_{m}) \pi_{g}(x_{1}, ..., x_{m}|\eta) dx_{1}...dx_{m}$$

▶ Response *Y* with item response function

$$r \sim \underline{\eta}, \underline{x}_1, ..., \underline{x}_m$$

$$f(r|\frac{\eta}{\eta}, x_1, ..., x_m)$$

Assessment model

$$r \sim \eta$$

Observed item response function

$$f(r|\eta) = \int f(r|\eta, x_1, ..., x_m) \pi(x_1, ..., x_m|\eta) dx_1...dx_m$$

► Two groups: 1 and 2.

$$f_{\mathbf{g}}(r|\boldsymbol{\eta}) = \int f(r|\boldsymbol{\eta}, \mathsf{x}_1, ..., \mathsf{x}_{\mathsf{m}}) \pi_{\mathbf{g}}(\mathsf{x}_1, ..., \mathsf{x}_{\mathsf{m}}|\boldsymbol{\eta}) \mathsf{d} \mathsf{x}_1 ... \mathsf{d} \mathsf{x}_{\mathsf{m}}$$

▶ Response *Y* with item response function

$$r \sim \underline{\eta}, x_1, ..., x_m$$

$$f(r|\frac{\eta}{\eta}, x_1, ..., x_m)$$

Assessment model

$$r \sim \frac{\eta}{1}$$

Observed item response function

$$f(r|\eta) = \int f(r|\eta, x_1, ..., x_m) \pi(x_1, ..., x_m|\eta) dx_1...dx_m$$

► Two groups: 1 and 2.

$$f_{g}(r|\eta) = \int f(r|\eta, x_{1}, ..., x_{m}) \pi_{g}(x_{1}, ..., x_{m}|\eta) dx_{1}...dx_{m}$$

▶ Response *Y* with item response function

$$r \sim \eta, x_1, ..., x_m$$

 $f(r|\eta, x_1, ..., x_m)$

Assessment model

$$r \sim \frac{\eta}{1}$$

Observed item response function

$$f(r|\eta) = \int f(r|\eta, x_1, ..., x_m) \pi(x_1, ..., x_m|\eta) dx_1...dx_m$$

Two groups: 1 and 2.

$$f_{g}(r|\eta) = \int f(r|\eta, x_{1}, ..., x_{m}) \pi_{g}(x_{1}, ..., x_{m}|\eta) dx_{1}...dx_{m}$$

Response Y with item response function

$$r \sim \eta, x_1, ..., x_m$$

$$f(r|\eta, x_1, ..., x_m)$$

Assessment model

$$r \sim \frac{\eta}{1}$$

Observed item response function

$$f(r|\eta) = \int f(r|\eta, x_1, ..., x_m) \pi(x_1, ..., x_m|\eta) dx_1 ... dx_m$$

Two groups: 1 and 2.

$$f_{g}(r|\eta) = \int f(r|\eta, x_{1}, ..., x_{m}) \pi_{g}(x_{1}, ..., x_{m}|\eta) dx_{1}...dx_{m}$$

Removing DIF

- ldeal solution: use the correct item response function $f(r|\eta, x_1, ..., x_m)$.
- \triangleright $x_1, ..., x_m$ unobserved
- Use process data features as proxies, $\theta_1, \ldots, \theta_K$.

Removing DIF – technical aspects

▶ Over fitting: including all process feature

$$f(r|\eta,\theta_1,\ldots,\theta_K)=f(r|\theta_1,\ldots,\theta_K)$$

Variable selection: minimum amount of process data so that

$$||f_1(r|\frac{\eta}{\eta},\theta_{i_1},\ldots,\theta_{i_l})-f_2(r|\frac{\eta}{\eta},\theta_{i_1},\ldots,\theta_{i_l})||\approx 0$$

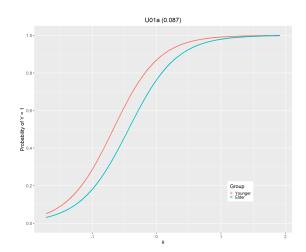
Why are process features good proxies?

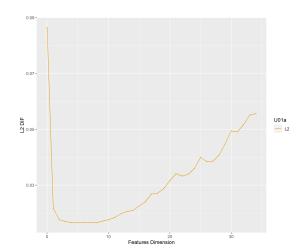
Process features contain sufficient information to remove DIF

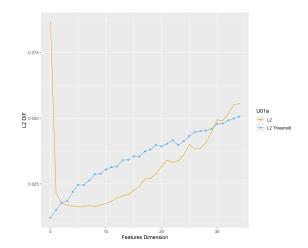
$$r = f(\theta_1, \ldots, \theta_K)$$

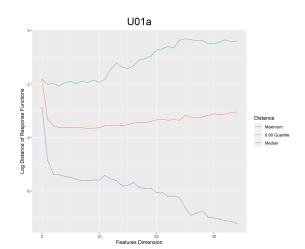
- Overfitting
- ▶ No extra information to estimate η
- DIF versus information: include minimum amount of process data to maintain non-differentiation of item functioning.
- A forward search algorithm

$$\max_{j} \|f_1(r|\frac{\eta}{\eta}, \theta_{i_1}, \dots, \theta_{i_k}, \theta_{j}) - f_2(r|\frac{\eta}{\eta}, \theta_{i_1}, \dots, \theta_{i_k}, \theta_{j})\|$$









References

- http://www.scientifichpc.com/processdata/pub.html
- ► Feature extraction
 - Tang, X., Wang, Z., He, Q., Liu, J., and Ying, Z. (2020) Latent Feature Extraction for Process Data via Multidimensional Scaling. Psychometrika.
 - Tang, X., Wang, Z., Liu, J., and Ying, Z. (2020) An Exploratory Analysis of the Latent Structure of Process Data via Action Sequence Autoencoder. British Journal of Mathematical and Statistical Psychology.
 - Tang, X., Zhang, S., Wang, Z., Liu, J., and Ying, Z. (2021) ProcData: An R Package for Process Data Analysis. Psychometrika. To appear.
- Partial Scoring:
 - Zhang, S., Wang, Z., Qi, J., Liu, J., and Ying, Z. Accurate Assessment via Process Data.
- Removing differential item functioning

Acknowledgement

Zhiliang Ying

Zhi Wang, Jitong Qi, Brian Ling

OECD, Educational Testing Service: Qiwei He

National Science Foundation, Army Research Office